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It is often numerically convenient to reduce models in two-dimensions to one-dimension.
This can be done formally through the use of centre manifold techniques, or informally
using physical reasoning. We investigate the extent to which flammability limits in a
two-dimensional slab are accurately represented by the values in the corresponding one-
dimensional slab. We use a simple chemical mechanism containing exothermic and endother-
mic reactions that has been used to model the combustion of hydrocarbon fragments produced
by polymer pyrolysis.
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1. Introduction

It is well known that premixed flames only exist within certain parameter ranges,
or flammability limits, that correspond to a rate of heat production that is sufficient to
sustain the reaction [1]. In this work we compare flammability limits calculated from
two- and one-dimensional models of a batch reactor. As it is numerically convenient to
reduce problems in two-dimensions to one-dimension, the motivation for this work is to
determine under which conditions this reduction is valid. Besides our earlier paper [2]
we are not aware of any other comparisons between one- and two-dimensional reactors
within the context of flammability limits.

In our previous paper the oxidation chemistry was represented by a single one-step
global irreversible reaction that is first order with respect to both of the reactants. In
this paper we use an extension of this mechanism which has been used to model the
combustion of hydrocarbons produced by the pyrolysis of polymers [3–6]. Our aim is to
investigate the sensitivity of our previous results to the choice of mechanism.
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2. Description of the model

The reaction mixture, comprising fuel (F) and oxygen (O2) is assembled in a batch
reactor with a specified total concentration (C) and at a designated ambient tempera-
ture (Ta). The initial concentrations of both fuel and oxygen concentrations are assumed
to be spatially uniform and are given byαC and(1−α)C, respectively. In these expres-
sions the parameterα is referred to as the fuel fraction and is the ratio of the initial fuel
concentration to the total reactant concentration:

α = F(t = 0)

F(t = 0)+O2(t = 0)
. (1)

The batch reactor is treated as a slab and we investigate one- and two-dimensional
formulations of our model. In the one-dimensional model we include a term in the
temperature equation representing bulk heat loss through convective heat-transfer. The
incorporation of this term into the reaction–diffusion equation, rather than as a boundary
condition, occurs when a two-dimensional problem is reduced to one dimension by tak-
ing an appropriate average. Combustion problems, particularly in the context of wave
propagation, in which heat-loss is included in this manner have been investigated re-
cently [7–12]. Alternatively, heat-loss of the form used in this paper is often described
as representing a volumetric heat-loss.

The initial temperature distribution is assumed to be non-uniform and is written in
the form

T (x,0) = Ta+ T f (x), (2)

wheref (x) � 0, Ta is the ambient temperature and we refer to the parameterT as the
initial condition parameter. We fix the form of the functionf (x) (a Gaussian) and vary
the initial condition parameter. This is a simple means for modelling the energy input
from an ignition source, viewing the ignition source is as a mechanism for changing the
initial condition of the system. The Gaussian profile ensures that the energy input decays
exponentially away from the local point of initiation.

We investigate the response of the system to changes in the initial condition (T ),
the fuel fraction (α), the effective heat-transfer coefficient (χG) and the half-thickness of
the two-dimensional slab (d). For a given experimental setup the effective heat-transfer
coefficient is usually considered fixed although it is possible to vary it. For example,
the heat transfer coefficient (χ) can be changed if the batch reactor is placed within a
temperature-controlled oven by varying the fan-speed within the oven. Alternatively, the
geometric factorG may be varied by changing the diameter of the batch reactor.

2.1. Model chemistry

The oxidation chemistry is represented by two global irreversible reactions. These
represent exothermic oxidation reactions and endothermic “incomplete combustion re-
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actions”. The former is first order with respect to both of the reactants whereas as the
latter is first order with respect to the fuel concentration:

F +O2→ Products Oxidation: Exothermic; (3)

F → Products Incomplete reactions: Endothermic. (4)

The stoichiometric coefficients are taken to be unitary for simplicity. The global
mechanism used in [2] consisted solely of the oxidation step, reaction (3).

3. Model equations

In this section we give the governing equations for the mechanism (3), (4) occur-
ring in a slab of nominal length 2L (running fromx = 0 to x = 2L) and thickness 2d
(running fromy = −d to y = d). We reduce the integration domain by imposing a
symmetry condition along the linesx = L andy = 0. The definition of the parameters
and the values used in this work are given in table 1.

Table 1
Parameters and typical parameter values.

A Pre-exponential factor for oxidation A = e12.6 (m3 mol−1 s−1)
Ai Pre-exponential factor for “incomplete combustion reactions” Ai = e27.8 (s−1)
C The concentration of reactants at timet = 0 C = 4 (mol m−3)
E Activation energy for oxidation E = 88 (kJ mol−1)
Ei Activation energy for “incomplete combustion reactions” E = 243 (kJ mol−1)
Df Diffusion coefficient of oxygen Df = 5.6 · 10−5 (m2 s−1)
Do Diffusion coefficient of oxygen Df = 5.6 · 10−5 (m2 s−1)
F The concentration of fuel in the reactor (mol m−3)
G A geometric factor (G = 1/d) (m−1)
L Reactor half-length L = 0.115 (m)
O2 The concentration of oxygen in the reactor (mol m−3)
Q Oxidation exothermicity Q = 3000 (kJ mol−1)
Qi Modulus of the “incomplete combustion reactions” endothermicityQ = 400 (kJ mol−1)
R Ideal gas constant R = 8.31431 (JK−1 mol−1)
T Temperature (K)
T Initial condition parameter (K)
Ta Ambient temperature Ta = 298 (K)
cv Heat capacity of the reaction mixture at constant volume cv = 3R (JK−1 mol−1)
d Half thickness of the reactor in they-direction (m)
k Thermal conductivity k = 6.0 · 10−3 (Wm−1 K−1)
t Time (s)
x Spatial distance (length of the reaction tube) (m)
y Spatial distance (width of the reaction tube) (m)
α The fraction of fuel in the reaction-mixture at timet = 0 (—)
σ A constant in the Gaussian profile for the initial condition σ = 0.15 (—)
χ Heat transfer coefficient (W m−2 K−1)
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3.1. Model equations: one-dimensional problem

Temperature equation on 0� x � L:

k
∂2T

∂x2
= Ccv

∂T

∂t
−QAexp

[−E
RT

]
FO2 +QiAi exp

[−Ei

RT

]
F + χG(T − Ta). (5)

Fuel equation on 0� x � L:

Df
∂2F
∂x2
= ∂F
∂t
+ Aexp

[−E
RT

]
FO2+ Ai exp

[−Ei

RT

]
F . (6)

Oxygen equation on 0� x � L:

Do
∂2O2

∂x2
= ∂O2

∂t
+ Aexp

[−E
RT

]
FO2. (7)

Boundary conditions:

T (x = 0) = Ta,
∂T

∂x

∣∣∣∣
x=L
= 0, (8)

∂F
∂x

∣∣∣∣
x=0

= 0,
∂F
∂x

∣∣∣∣
x=L
= 0, (9)

∂O2

∂x

∣∣∣∣
x=0

= 0,
∂O2

∂x

∣∣∣∣
x=L
= 0. (10)

Initial conditions:

T (x,0)= Ta+ T
1− exp[(−1)/(2σ 2)]

{
exp

[
−((x − L)/L)

2

2σ 2

]
− exp

[ −1

2σ 2

]}
,(11)

F(x,0)= αC, (12)

O2(x,0)= (1− α)C. (13)

Equation (5) models the temperature of the reactor along its length. The term
χG(T − Ta) represents Newtonian cooling. We refer to the productχG as theeffective
heat transfer parameter. Centre-manifold theory (and physical reasoning) gives the rela-
tionship between the geometric factor (G) and the half-thickness of the two-dimensional
model (d) asG = 1/d [10]. The casesχG = 0 andχG > 0 represent a perfectly
insulated reactor (an adiabatic reactor) and an imperfectly insulated reactor (a diabatic
reactor), respectively. The former represents the infinite Biot number limit of a classical
thermal explosion theory.

Equations (6) and (7) model the concentration of fuel and oxygen inside the reactor,
respectively. For simplicity multi-component diffusion is not considered.

In equations (5)–(7) we have assumed that physical properties such as the thermal
conductivity (k), the volumetric heat-capacity (cv) and the diffusion coefficients (Df and
Do) are independent of the mixture composition.
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In the boundary conditions, equations (8)–(10), we have assumed a no-flux bound-
ary condition atx = L and atx = 0 we have imposed a constant reactor temperature
(infinite Biot number) and a no-flux condition for the reactants.

In the initial conditions, equations (11)–(13), we have assumed that the initial tem-
perature decays in a Gaussian manner away from the centre of the reactor. At the edge
of the reactor we haveT (0,0) = Ta and at the centreT (L,0) = Ta + T . The initial
concentration of the reactants is assumed to be uniform.

The system defined by equations (5)–(13) was integrated using the technique of the
method of lines [13]. This is implemented in MATLAB using the routine ode15s which
can handle differential algebraic equations of index 1 [14].

3.2. Model equations: two-dimensional problem

We reduce the integration domain by imposing a symmetry condition along the
linesx = L andy = 0.

Temperature equation on 0� x � L, 0� y � d:

k

(
∂2T

∂x2
+ ∂

2T

∂y2

)
= Ccv

∂T

∂t
−QAexp

[−E
RT

]
FO2+QiAi exp

[−Ei

RT

]
F . (14)

Fuel equation on 0� x � L, 0� y � d:

Df

(
∂2F
∂x2
+ ∂

2F
∂y2

)
= ∂F
∂t
+ Aexp

[−E
RT

]
FO2 + Ai exp

[−Ei

RT

]
F . (15)

Oxygen equation on 0� x � L, 0� y � d:

Do

(
∂2O2

∂x2
+ ∂

2O2

∂y2

)
= ∂O2

∂t
+ Aexp

[−E
RT

]
FO2. (16)

Boundary conditions alongx = 0:

T (0, y) = Ta,
∂F
∂x

∣∣∣∣
0,y

= 0,
∂O2

∂x

∣∣∣∣
0,y

= 0. (17)

Boundary conditions alongx = L:

∂T

∂x

∣∣∣∣
L,y

= 0,
∂F
∂x

∣∣∣∣
L,y

= 0,
∂O2

∂x

∣∣∣∣
L,y

= 0. (18)

Boundary conditions alongy = 0:

∂T

∂y

∣∣∣∣
x,0

= 0,
∂F
∂y

∣∣∣∣
x,0

= 0,
∂O2

∂y

∣∣∣∣
x,0

= 0. (19)

Boundary conditions alongy = d:

−k ∂T
∂x

∣∣∣∣
x,d

= χ(T − Ta),
∂O2

∂y

∣∣∣∣
x,d

= 0,
∂O2

∂y

∣∣∣∣
x,d

= 0. (20)
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Initial conditions:

T (x,0)= Ta+ T
1− exp[(−1)/(2σ 2)]

{
exp

[−((x − L)/L)2
2σ 2

]
− exp

[ −1

2σ 2

]}
, (21)

F(x,0)= αC, (22)

O2(x,0)= (1− α)C. (23)

In the two-dimensional model the energy equation (14) no longer contains a New-
tonian cooling term. This now appears in the temperature boundary condition aty = d,
equation (20).

The system defined by equations (14)–(23) was integrated using FlexPDE [15]
which uses the finite element method to solve boundary value problems. Its features
include adaptive grid refinement (eliminating the need to determine an appropriate mesh)
and adaptive time stepping (based on the user’s pre-determined accuracy).

In order to compare the results of the one- and two-dimensional models we calcu-
late an effective heat-transfer parameter for the two-dimensional model by dividing the
heat-transfer coefficient (χ) by the half-width of the reactor (d) [10].

3.3. Characterising the performance of the reactor

In investigating the properties of the system defined by equations (5)–(13) we are
primarily interested in distinguishing between regions of super-criticality, representing
combustion, and sub-criticality, corresponding to acquiescence of the reactants. To do
this we use two indicators of the behaviour of the system: themaximum temperature
increase (�Tmax) and thefractional conversion at 20 seconds (FC).

We define the maximum temperature increase by

�Tmax= max
t

max
0�x�L

(
T (x, t) − T (x,0)). (24)

Note that�Tmax is non-zero in the absence of chemical reaction (α = 0 andα = 1)
– due to diffusion of the energy deposited in the initial temperature profile through the
reactor. Other choices to measure the temperature rise within the reactor are possible.

We define the fractional conversion by

FC = αC − ∫ x=L
x=0 F(x, t = 20)dx

αC
. (25)

In practice we do not need to integrate the fuel concentration over the reactor do-
main because numerical investigations reveal that (in most cases) byt = 20 the concen-
tration profile is flat.
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(a) (b)

Figure 1. Criticality in the adiabatic and diabatic one-dimensional reactors. (a) Adiabatic one-dimensional
reactor. (b) Diabatic one-dimensional reactor. Parameter values: (a)α = 0.5 andχG = 0 W K−1 m−3,

(b) α = 0.45 andT = 226 K.

4. Results

In section 4.1 we describe the process by which flammability limits are determined
for both of our models. Flammability limits for the two models are compared in sec-
tion 4.2.

4.1. Determination of criticality

Flammability limits are determined experimentally under fixed ignition conditions,
for example, by applying a flame for a specified length of time to the reaction mixture or
using a particular type of spark igniter. In our model this is equivalent to specifying the
value of the initial condition variable (T ).

Figure 1(a) shows how the response of the system depends upon the value of the
initial condition variable (T ), or equivalently how “strong” the ignition source is. This
is for a one-dimensional adiabatic reactor with equal-molar initial concentrations of fuel
and oxygen. For subcritical values ofT the fractional conversion is zero and there is a
small temperature increase. As noted in section 3.3 the non-zero temperature increase
is primarily caused by diffusion of the energy placed into the reactor at timet = 0 by
the ignition source. For sufficiently large values ofT the fractional conversion is one
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and the maximum temperature increase is high. The regions of sub- and super-criticality
are clearly demarcated. We define the critical value ofT as the lowest value at which
ignition occurs. For figure 1(a) this value isT = 223.7 K. The critical value of the
initial condition variable will be higher for other values of the fuel fraction. The critical
value would also be higher for a given value of the heat-transfer coefficient in a diabatic
reactor.

In the reminder of this paper we fix the “strength” of the ignition source and in-
vestigate how the transition from sub- to super-criticality depends upon the values of the
effective heat-transfer parameter and the fuel fraction (flammability limits). We consider
the casesT = 226 K andT = 246 K. The former represents an ignition source that is
close to criticality for the adiabatic reactor whenα = 0.5, the latter represents a stronger
ignition source. Note that as we are now interested in behaviour in a diabatic reactor the
ignition source has to be stronger than the critical value in the adiabatic reactor.

Figure 1(b) illustrates the transition from super- to sub-critical behaviour as the
effective heat-transfer parameter is increased. In the supercritical region the fractional
conversion is one and there is a high maximum temperature increase. In the subcrit-
ical region the fractional conversion is zero and there is a low maximum temperature
increase. The existence of a critical value of the effective heat-transfer parameter is evi-
dent and the use of sensitivity analysis to identify criticality is not needed here, unlike in
some cases of our previous investigation [2]. We define the critical value of the effective
heat-transfer parameter to be the highest value at which ignition occurs. Consequently
the reaction mixture specified byα = 0.45 is flammable if 0� χG � 1.00 when
T = 226 K. Furthermore, figure 1(b) shows that the critical value of the effective heat-
transfer parameter is independent of the choice of our indicator functions (maximum
temperature and fractional conversion).

4.2. Comparison of flammability limits in the one- and two-dimensional models

The process illustrated in figure 1(b) was repeated for various values of the fuel
fraction and for two values of the initial condition variable. These calculations were
made for both the one- and two-dimensional model. The dependence of the flammability
limits upon the effective heat-transfer parameter (χG) is shown in figure 2. In both
diagrams flammability limits are only shown forα � 0.5 because the flammability
limits are symmetric inα about the value 0.5.

Note that the fuel fraction (α) only appears in equations (12)–(13) and that when
Ai = 0 our model does not differentiate between the fuel and oxygen species. Thus
in our previous paper [2], where the oxidation mechanism only included reaction (3),
the behaviour of the model, i.e., flammability limits, was anticipated to be symmetric in
the fuel fraction around the pointα = 0.5. However, whenAi > 0 there is a distinc-
tion between the fuel and oxygen species and the model is no longer symmetric with
respect to the fuel fraction variable. The unexpected symmetry in figure 2 occurs be-
cause reaction (4) is a high-temperature reaction that is negligible at the temperatures
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(a) (b)

Figure 2. Comparison of flammability limits calculated in the one- and two-dimensional models. (a) Initial
condition variableT = 226 K. (b) Initial condition variableT = 246 K. Points to the left of a particular

curve are flammable, whereas points to the right are non-flammable.

at which ignition occurs. Consequently the conditions for ignition are only dependent
upon reaction (3).

Figure 2 clearly shows that the one-dimensional model is a lower-bound for the
two-dimensional model. In figure 2(a) the one-dimensional model is seen to be a good
approximation for the two-dimensional model whend � 0.01 m. When the half-width
is increased tod = 0.02 m the one-dimensional model mimics the general trend of the
two-dimensional model. However, the accuracy of the one-dimensional approximation
decreases as the fuel fraction increases. In the worst case (α = 0.5) the critical value
of the effective heat-transfer parameter in the two-dimensional model is approximately
17% larger than the value predicted by the reduced model. In figure 2(b) the initial
condition variable has been increased toT = 246 K. When the half-width isd = 0.005
andd = 0.01 the one-dimensional model predicts the general trends seen in the two-
dimensional model. In the worst case (α = 0.5) the critical value of the effective heat-
transfer parameter in the two-dimensional model is approximately 3.9% higher (d =
0.005) and 36% higher (d = 0.01) than that predicted by the reduced model. The one-
dimensional approximation is clearly inadequate for a half-widthd = 0.02 m.
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5. Discussion

Flammability limits are usually measured in the US Bureau of Mines appara-
tus [16]. In this method an ignition source is introduced at the lower end of a vertical
tube of length 1.5 m and a mixture deemed to be flammable if a flame can propagate at
least half-way up the tube. Conceptually, one imagines the flame as being a wave. For
supercritical systems we have observed waves travelling across our “tube”. These are
similar in structure to those reported elsewhere [17]. Consequently, spatial profiles are
not presented here.

6. Conclusion

In this paper we have compared flammability limits of fuel–oxygen mixtures in a
two-dimensional slab to the corresponding one-dimensional approximation which incor-
porates an averaged heat-loss term. We used a simple chemical mechanism consisting
of a single exothermic reaction, an oxidation step, and a single endothermic reaction,
representing “incomplete combustion reactions”. For the parameter values used in this
paper there was a clear-cut distinction between sub- and super-critical behaviour.

The accuracy of the one-dimensional model decreases as either the half-thickness
of the tube is increased or the strength of the ignition source, represented by initial
condition variable, is increased. For a value of the initial condition variableT = 226 K
just above the minimum ignition strength required to ignite an equal-molar fuel–oxygen
mixture in an adiabatic reactor (T = 223.7 K), the one-dimensional model accurately
reproduced the results of the two-dimensional model for values of the half-thickness
d � 0.01 m and provided a reasonable approximation whend = 0.02 m. For a slightly
higher value of the initial condition variable (T = 246 K) the one-dimensional model
was only accurate ford � 0.005 m. For sufficiently thick tubes the one-dimensional
model was shown to be inadequate at predicting the behaviour of the two-dimensional
model (see curve 3 in figure 2(b)). Thus the reduced model has only a very limited range
of applicability.

An interesting question that remains unanswered is whether the one-dimensional
model becomes more robust if a more realistic low-temperature ignition mechanism is
used.
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